

Aufklappbarer Hall-Effekt AC/DC Stromsensor CYHCS-KA

Dieser Hall-Effekt Stromsensor basiert auf dem Hall-Effekt Messprinzip, und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und der sekundären Schaltung entwickelt. Er kann für Messungen von DC und AC Strom sowie von Impulsstrom usw. verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

Produkteigenschaften	Anwendungen
Aufklappbar	Photovoltaik-Anlagen
Einfache Installation	 Nicht unterbrechbare Stromversorgung (UPS)
Exzellente Genauigkeit	Zahlreiche Versorgungsspannung
Sehr gute Linearität	 Frequenzkonvertierte Timing-Ausrüstung
Geringe Stromverbrauch	Elektrische Schweißmaschinen
Fensterstruktur	 Umspannstation
Elektrisch Isoliert den Ausgang des	Numerische Kontrollmaschinenwerkzeuge
Stromwandlers vom Primärstromleiter	Elektrische angetriebene Lokomotiven
 Keine Einfügungsverlust 	 Mikrocomputerüberwachung
 Stromüberlastbarkeit 	Elektrische Energienetzwerküberwachung

Elektrische Daten

Primärer Nominal- strom I_r (A)	Messbereich (A)	Ausgangsstrom (Nachlauf) Io	Fenstermaß (mm)	Teilenummer
80	± 120			CYHCS-KA80A
200	± 300			CYHCS-KA200A
400	± 600	4.2ma A.D.C. 2ma A	64 x 16	CYHCS-KA400A
500	± 750			CYHCS-KA500A
600	± 900	12mADC±8mA	04 X 10	CYHCS-KA600A
800	± 1200			CYHCS-KA800A
1000	± 1500			CYHCS-KA1000A
2000	± 3000			CYHCS-KA2000A

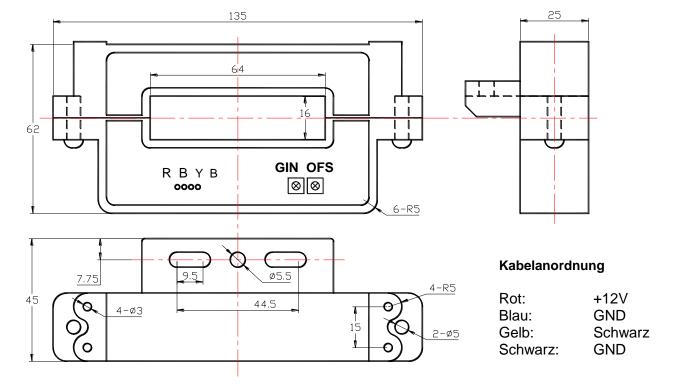
Versorgungsspannung V_{cc} = +12VDC \pm 5% Stromverbrauch I_c < 20mA +lo

Galvanische Isolation, 50/60Hz, 1min: 6kV solationswiderstand @ 500 VDC > 500 MΩ

Genauigkeit und dynamische Leistungseigenschaften

Genauigkeit bei I_r , T_A =25°C (ohne Offset), X < 1.0%Linearität von 0 bis I_r , T_A =25°C, $E_L < 1.0\%$ FS Elektrische Offsetstrom, T_A =25°C, $12\text{mA} \pm 0.05\text{mA}$ Thermaldrift des Offsetstromes, $V_{ot} < \pm 0.05\text{mA}$ /°C Frequenzbandbreite (- 3 dB): DC-20kHz Antwortzeit bei 90% von I_P (f=1k Hz) $t_r \le 5\mu$ s

Tel.: +49 (0)8121 - 2574100


Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Allgemeine Daten

Betriebstemperatur, Lagerungstemperatur, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Maße

Hinweis:

- 1. Verbinden Sie die Anschlüsse der Versorgungsspannung und des Ausgangs richtig. Stellen Sie niemals eine falsche Verbindung her.
- 2. Zwei Potentiometer können (nur wenn es unbedingt notwendig ist) eingestellt werden, indem sie mit einem kleinen Schraubenzieher langsam zur erforderlichen Genauigkeit gedreht werden.
- 3. Die höchste Genauigkeit wird erreicht, wenn das Fenster komplett mit Stromleitern gefüllt ist.
- 4. Der In-Phasenausgang wird erreicht, wenn die Richtung des Stromes des Stromkabels die gleiche ist wie die Richtung der am Gehäuse gekennzeichneten Pfeile.