

Hall Effekt AC/DC Stromsensor CYHCS-GBT

Dieser Hall-Effekt-Stromsensor basiert auf dem Prinzip des geschlossenen Regelkreises und ist mit einer Kernstruktur und einer hohen galvanischen Trennung zwischen Primärleiter und Sekundärkreis ausgestattet. Er kann für Messungen von DC- und AC-Strom usw. verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

Produkteigenschaften	Anwendungen		
aufklappbar	Photovoltaik-Anlagen		
Exzellente Genauigkeit	Frequenz Konvertierung Timing Ausrüstungen		
Sehr gute Linearität	Zahlreiche Versorgungsspannungen		
Geringes Gewicht	Nicht unterbrechbare Stromversorgung (UPS)		
Geringer Energieverbrauch	Elektrische Schweißgeräte		
Fensterstruktur	Umspannstationen		
den Ausgang des Stromwandlers vom	Numerisch kontrollierte Maschinen		
Primärstromleiter elektrisch isoliert	Elektrisch angetriebene Lokomotiven		
Keine Einfügungsverlust	Mikrocomputerüberwachung		
Stromüberlastbarkeit	Überwachung eines elektrischen Energienetzwerkes		

Elektrische Daten/ Eingang

Primärer Nominal- strom I_r (A)	Primärstrom Messbereich <i>I_p</i> (A)	Ausgangsspannung (Nachlauf) (V)	Teilenummer
10A	0 ~ ± 20A	2.5V±1V ±0.5%	CYHCS-GBT-10A
20A	0 ~ ± 40A		CYHCS-GBT-20A
25A	0 ~ ± 50A		CYHCS-GBT-25A
40A	0 ~ ± 80A		CYHCS-GBT-40A

Versorgungsspannung: V_{cc} =+5VDC±5%Stromverbrauch: I_c < 16~35mA</td>Isolationsspannung:2,5kV, 50/60Hz, 1min

Elektrische Daten/ Ausgang

Ausgangsspannung bei I_r , T_A =25°C: V_{out} =2.5 V_{t} 1 V_{t} 10.5%

Ausgangswiderstand: $R_{\rm out} < 150\Omega$ Lastwiderstand: $R_{\rm L} > 10 {\rm k}\Omega$

Genauigkeit

Genauigkeit bei I_r , T_A =25°C (ohne Offset), X < 0.5%FSLinearität 0 bis I_r , T_A =25°C, $E_L < 0.2\%FS$

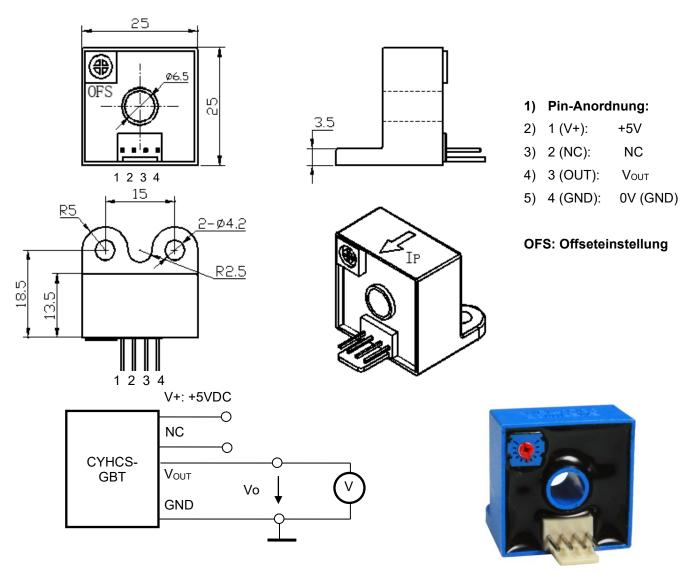
Elektrische Offset- Spannung, T_A =25°C, V_{oe} = 2.5V±25mV Magnetische Offset- Spannung ($I_r \rightarrow 0$) $V_{om} < \pm 20$ mV Thermaldrift der Offset- Spannung, (-25°C~+85°C) $V_{ot} < \pm 0.5$ mV/°C

Thermaldrift (-10°C bis 50°C), T.C. $<\pm 0.12\%$ /°C Antwortzeit bei 90% von I_P (f=1k Hz)

Frequenzbandbreite (-3dB), $f_b = DC-100kHz$

Standard: Q/320115QHKJ01-2013

Tel.: +49 (0)8121 - 2574100


Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Allgemeine Daten

Betriebstemperatur, Lagerungstemperatur, Einzelgewicht: T_A =-25°C ~ +85°C T_S =-40°C ~ +100°C 12g/Stück

PIN-Definition und Maße

Hinweis:

- 1. Verbinden Sie die Anschlüsse der Versorgungsspannung und des Ausgangs richtig. Stellen Sie niemals eine falsche Verbindung her.
- 2. Zwei Potentiometer können (nur wenn es unbedingt notwendig ist) eingestellt werden, indem sie mit einem kleinen Schraubenzieher langsam zur erforderlichen Genauigkeit gedreht werden.
- 3. Die höchste Genauigkeit wird erreicht, wenn das Fenster komplett mit Stromleitern gefüllt ist.
- 4. Der In-Phasenausgang wird erreicht, wenn die Richtung des Stromes des Stromkabels die gleiche ist wie die Richtung der am Gehäuse gekennzeichneten Pfeile.

Email: info@cy-sensors.com http://www.cy-sensors.com