

Hall-Effekt Stromsensor CYHCS-ES5B mit geschlossener Kreisstruktur

Dieser Hall-Effekt Stromsensor basiert auf der geschlossenen Kreisstruktur und dem Kompensationsprinzip, und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und der sekundären Schaltung entwickelt. Er kann für Messungen von DC und AC Strom sowie von Impulsstrom etc. verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

Produkteigenschaften	Anwendungen		
 Geringe Größe, eingekapselt Exzellente Genauigkeit Sehr gute Linearität Geringer Stromverbrauch Stromüberlastbarkeit 	 Photovoltaik-Anlagen Mehrzweck- Wechselrichter AC/DC Variable Geschwindigkeitstreiber Batteriebetriebene Anwendungen Nicht unterbrechbare Stromversorgung (UPS) Umschaltbare Stromversorgung 		

Elektrische Daten/Eingang

Teilenummer	Primärer	Messbereich	Windungsverhältnis	Interner	
	Nennstrom I_r (A)	$I_{\rho}(A)$		Messwiderstand (Ω)	
CYHCS-ES5B-10A	10	± 22	1:1000	100±0.1%	
CYHCS-ES5B-25A	25	± 55	1:1250	50±0.1%	
CYHCS-ES5B-50A	50	± 110	1:1250	25±0.1%	
CYHCS-ES5B-75A	75	± 165	1:1500	20±0.1%	
CYHCS-ES5B-100A	100	± 220	1:2000	20±0.1%	

+2.5V±1.0V ±0.5%FS Nennspannung am Ausgang: Versorgungsspannung: $+5V \pm 5\%$, Referenzspannung R: +2.5VDC ±0.5% FS Elektrische Offsetspannung +2.5VDC ±0.5%FS Stromverbrauch (bei V_{out}=0V) 20mA Isolationsspannung (50/60Hz, 1min) 3.0kV 0.5% FS Genauigkeit: Linearität: <0.1% FS Thermaldrift von Offsetspannung, ±0.5mV/°C Antwortzeit: < 1.0µs 100A/µs Di/dt Folgegenauigkeit: Frequenzbandbreite (-1dB): DC ~ 200 kHz

Allgemeine Daten

Betriebstemperatur $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Lagerungstemperatur $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Beziehung zwischen Eingangsstrom und Ausgangsspannung

Beim Sensor CYHCS-ES5B-25A beispielsweise ist die Beziehung zwischen Eingangsstrom und Ausgangsspannung in der Tabelle 1, Bild 1 und Bild 2 dargestellt.

Tabelle 1 Beziehung zwischen Eingangsstrom und Ausgangsspannung

Eingangsstrom (A)	-55	-40	-25	-15	0	15	25	40	55
Ausgangsspannung (V)	0.3	0.9	1.5	1.9	2.5	3.1	3.5	4.1	4.7

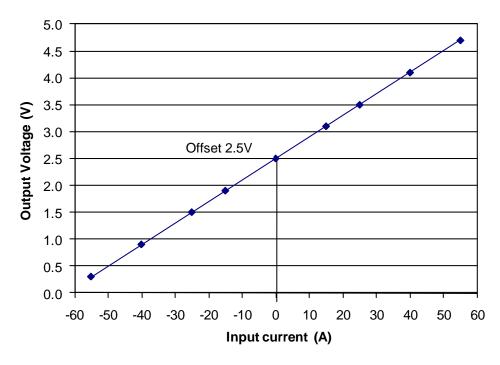


Bild. 1 Beziehung zwischen Eingangsstrom (DC) und Ausgangsspannung (DC)

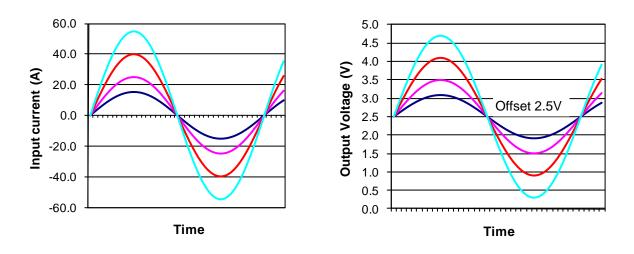


Bild. 2 Beziehung zwischen Eingangsstrom (AC) und Ausgangsspannung (AC)

Email: info@cy-sensors.com http://www.cy-sensors.com

Maße (mm)

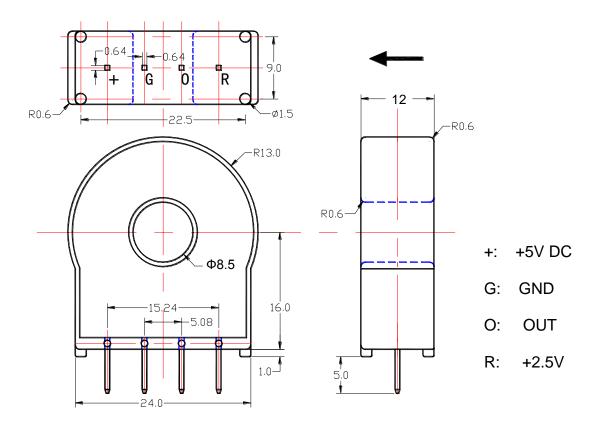


Bild. 3 Maße von CYHCS-ES5B

Verbindung

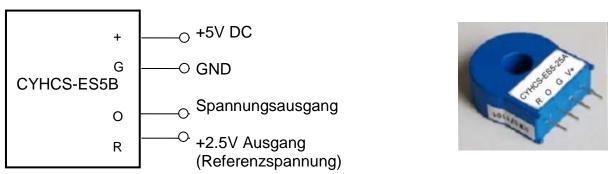


Bild. 4 Verbindung CYHCS-ES5B

Hinweis:

1. Verbinden Sie die Anschlüsse der Stromversorgung und des Ausgangs richtig. Stellen Sie keine falschen Verbindungen für den DC Strom her.

Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121 - 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

2. Die Temperatur des primären Leiters sollte 100°C nicht überschreiten.