

Aufklappbarer Hall-Effekt AC/DC Stromsensor CYHCS-EKO

Dieser Stromsensor basiert auf dem Hall-Effekt Prinzip mit offener Kreisstruktur, und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und der sekundären Schaltung entworfen. Er kann für Messungen von DC und AC Strom sowie von Impulsstrom verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

Produkteigenschaften	Anwendungen		
 Exzellente Genauigkeit Sehr gute Linearität Geringer Stromverbrauch Aufklappbare Fensterstruktur Den Ausgang des Stromwandlers vom Primärstromleiter elektrisch isoliert Keine Einfügungsverlust Stromüberlastbarkeit 	 Photovoltaik-Anlagen Frequenzkonvertierte Timing-Ausrüstung Nicht unterbrechbare Stromversorgung (UPS) Elektrische Schweißmaschinen Umspannstation Numerische Kontrollmaschinenwerkzeuge Elektrische angetriebene Lokomotiven Elektrische Energienetzwerküberwachung 		

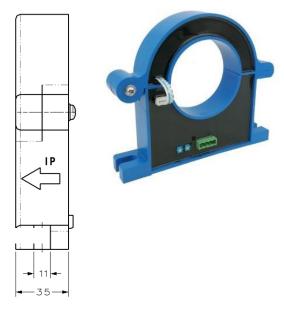
Elektrische Daten

Primärer Nominal-	Messbereich	Ausgangsspannung	Fenstergröße	Teilenummer
strom $I_r(A)$	(A)	(Nachlauf) (V)	(mm)	
500A	0 ~ ± 1000A			CYHCS-EKO-500A-X
1000A	0 ~ ± 2000A			CYHCS-EKO-1000A-X
2000A	0 ~ ± 3000A			CYHCS-EKO-2000A-X
5000A	0 ~ ± 6000A	V 0 4\/ . 4 00/		CYHCS-EKO-5000A-X
8000A	0 ~ ± 10000A	X=0: ±4V ±1.0% X=1: ±5V ±1.0%	Ø80	CYHCS-EKO-8000A-X
10000A	0 ~ ± 12000A	Λ=1. ±3V ±1.0%		CYHCS-EKO-10000A-X
12000A	0 ~ ± 15000A			CYHCS-EKO-12000A-X
15000A	0 ~ ± 18000A			CYHCS-EKO-15000A-X
20000A	0 ~ ± 24000A			CYHCS-EKO-20000A-X

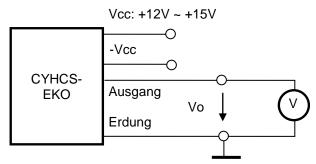
Versorgungsspannung $V_{cc}=\pm 12 \sim \pm 15 \text{VDC}$ Stromverbrauch $I_c < 50 \text{mA}$ Galvanische Isolation, 50/60Hz, 1min: 6kV, 50/60Hz, 1min Lastwiderstand: ≥10kΩ Ausgangsimpedanz: $R_{out} < 150\Omega$ Genauigkeit bei I_r , T_A =25°C (ohne Offset), E < 1.0% E_L <1.0% FS Linearität von 0 bis I_r , $T_A=25$ °C, Linearer Messbereich: 1,2-2facher Nennstrom Überlastfähigkeit: 3-facher Messbereich Elektrische Offsetspannung, T_A =25°C, $V_{oe} < \pm 25 \text{mV}$ Magnetische Offsetspannung ($I_r \rightarrow 0$) $V_{om} < \pm 25 \text{mV}$ Thermaldrift der Offsetspannung, V_{ot} <±1.0mV/°C Frequenzbandbreite(- 3 dB): $f_b = DC-6kHz$ Antwortzeit bei 90% von I_P (f=1kHz) $t_r < 10 \mu s$

Allgemeine Daten


Betriebstemperatur, $T_A = -25 \,^{\circ}\text{C} \sim +85 \,^{\circ}\text{C}$ Lagerungstemperatur, $T_S = -40 \,^{\circ}\text{C} \sim +100 \,^{\circ}\text{C}$ Einheitsgewicht: 1165g/stück Standard: Q/320115QHKJ01-2016


Markt Schwabener Str. 8 D-85464 Finsing Germany Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

PIN-Definition und Maße



OFS: Offset-Anpassung GIN: Offset-Anpassung

Pinanordnung des Steckers:

1: Vcc 2: -Vcc

3: Ausgang 4: 0V (Erdung)

Kabelanschluss:

Rot: +Vcc

Blau: -Vcc

Gelb: Ausgang

Schwarz: 0V (Erdung)

Hinweis:

- 1. Verbinden Sie die Anschlüsse der Versorgungsspannung und des Ausgangs richtig. Stellen Sie niemals eine falsche Verbindung her.
- 2. Zwei Potentiometer können (nur wenn es unbedingt notwendig ist) eingestellt werden, indem sie mit einem kleinen Schraubenzieher langsam zur erforderlichen Genauigkeit gedreht werden.
- 3. Die höchste Genauigkeit wird erreicht, wenn das Fenster komplett mit Stromleitern gefüllt ist.
- 4. Der In-Phasen-Ausgang kann erreicht werden, wenn die Stromrichtung des Stromtragleiters mit der am Wandler markierten Pfeilrichtung identisch ist.

http://www.cy-sensors.com