

# Hall-Effekt Stromsensor CYHCS-EC mit geschlossener Kreisstruktur

Dieser Hall-Effekt Stromsensor basiert auf der geschlossenen Kreisstruktur und dem Kompensationsprinzip und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und sekundären Schaltung entwickelt. Er kann für Messungen von DC und AC Strom sowie von Impulsstrom etc. verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

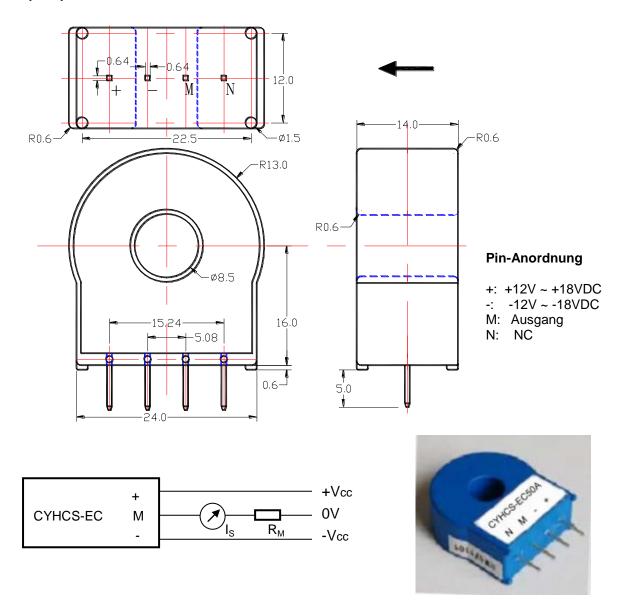
| Produkteigenschaften                                                                                                                                                          | Anwendungen                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Geringe Größe , eingekapselt</li> <li>Exzellente Genauigkeit</li> <li>Sehr gute Linearität</li> <li>Geringer Stromverbrauch</li> <li>Stromüberlastbarkeit</li> </ul> | <ul> <li>Photovoltaik-Anlagen</li> <li>Mehrzweck-Wechselrichter</li> <li>AC/DC Variable Geschwindigkeitstreiber</li> <li>Batteriebetriebene Anwendungen</li> <li>Nicht unterbrechbare Stromversorgung (UPS)</li> <li>Umschaltbare Stromversorgung</li> </ul> |

#### **Elektrische Daten**

| Teilenummer                            | CYHCS-EC50A                         | CYHCS-EC75A                              | CYHCS-EC100A                         | CYHCS-EC200A                          | Einheit |
|----------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|---------|
| Nominalstrom                           | 1-50                                | 1.5-75                                   | 2-100                                | 2-200                                 | Α       |
| Messbereich                            | 150 (±18V, 82<br>Ω)                 | 225 (±18V, 68<br>Ω)                      | 300 (±18V, 51 Ω)                     | 500 (±18V, 15 Ω)                      | Α       |
| Windungsverhältnis                     | 1:1000                              | 1:1500                                   | 1:2000                               | 1:2000                                |         |
| Analoger<br>Nominalstrom am<br>Ausgang | 1±0.5%FS (1A)<br>50±0.5%FS<br>(50A) | 1±0.5%FS<br>(1.5A)<br>50±0.5%FS<br>(75A) | 1±0.5%FS (2A)<br>50±0.5%FS<br>(100A) | 1±0.5%FS (2A)<br>100±0.5%FS<br>(200A) | mA      |
| Sekundärer<br>Spulenwiderstand         | 30                                  | 45                                       | 50                                   | 55                                    | Ω       |
| Versorgungswiderstand                  | ±12 ~ ±18                           |                                          |                                      |                                       | V       |
| Stromverbrauch                         | 20 + Ausgangsstrom                  |                                          |                                      |                                       | mA      |
| Galvanische Isolation                  | 50HZ, 1min, 3kV                     |                                          |                                      |                                       | kV      |

### Genauigkeit und dynamische Leistungseigenschaften

| Null-Offset Strom              | ±0.2                  | mA    |
|--------------------------------|-----------------------|-------|
| Thermaldrift des Offsetstromes | -25°C ~ +85°C, ±0.005 | mA/°C |
| Antwortzeit                    | <1                    | μs    |
| Linearität                     | ≤0.1                  | %FS   |
| Bandbreite(-3dB)               | DC200                 | kHz   |
| di/dt Folgegenauigkeit         | >100                  | A/µs  |


#### **Allgemeine Daten**

| Betriebstemperatur  | -25 ~ +85          | °C |
|---------------------|--------------------|----|
| Lagerungstemperatur | -40 ~ <b>+</b> 100 | °C |

http://www.cy-sensors.com



# Maße (mm)



## **Hinweis**

- 1. Verbinden Sie die Anschlüsse der Stromversorgung und des Ausgangs richtig. Stellen Sie keine falschen Verbindungen für den DC Strom her.
- 2. Die Temperatur des primären Stromleiters sollte 100°C nicht überschreiten.
- 3. Die dynamischen Leistungen (di/dt) und die Antwortzeit sind am besten, wenn eine einzelne Leitung das Primärloch komplett ausfüllt.
- 4. Um die beste magnetische Kupplung zu erreichen, müssen die primären Windungen über den oberen Rand des Geräts gewickelt werden

Email: info@cy-sensors.coi http://www.cy-sensors.com