

Hall-Effekt AC/DC Stromsensor CYHCS-B5V mit geschlossener Kreisstruktur

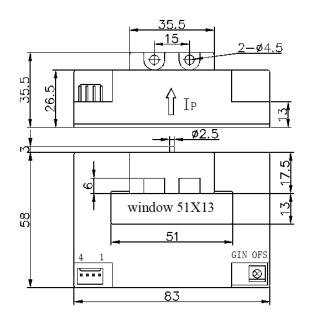
Dieser Hall-Effekt Stromsensor basiert auf der geschlossenen Kreisstruktur und dem Kompensationsprinzip, und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und der sekundären Schaltung. Er kann für Messungen von DC und AC-Strom sowie von Impulsstrom verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des Dauerstromleiters dar.

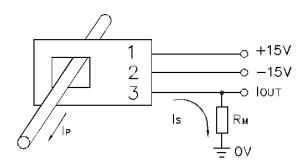
Produkteigenschaften	Anwendungen
Exzellente Genauigkeit Sehr gute Linearität	Photovoltaik-AnlagenMehrzweck-Wechselrichter
Geringer Stromverbrauch	AC/DC variable GeschwindigkeitstreiberBatteriebetriebene Anwendungen
StromüberlastbarkeitGute Temperatureigenschaften	 Ungestörte Energieversorgung (UPS) Umschalt-Energieversorgung

Elektrische Eigenschaften

Teilenummer	CYHCS-B5V- 200A	CYHCS-B5V- 300A	CYHCS-B5V- 400A	CYHCS-B5V- 500A	CYHCS-B5V- 600A
Nennstrom	200A	300A	400A	500A	600A
Messbereich	0~±300A	0~±450A	0~±600A	0~±750A	0~±900A
Windungsverhältnis	1:2000	1:3000	1:4000	1:5000	1:6000
Sekundäre interne Widerstand	13Ω	22Ω	39Ω	53Ω	75Ω
Ausgangsspannung	4V±0.5%				
Versorgungsspannung	±15VDC ±5%				
Galvanische Isolation	5kV RMS/50Hz/1min,				
Stromverbrauch	20mA + I _P /N				

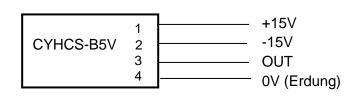
Genauigkeit & dynamische Eigenschaften


Null-Offsetspannung T _A =25°C	±20mV
Magnetischer Null-Offsetspannung I _P =0	±10mV
Thermaldrift der Offsetspannung	±0.5mV/°C (-25°C ~ +85°C)
Antwortzeit	<1.0µs
Genauigkeit T _A =25°C, V _C =±15V	±0.7%
Linearität T _A =25°C, V _C =±15V	≤0.1% FS
di/dt Folgegenauigkeit	150A/μs
Bandbreite (-3dB)	DC ~ 100kHz


Allgemeine Eigenschaften

Betriebstemperatur	-25°C~+85°C
Lagerungstemperatur	-40°C~+100°C
Gewicht per Stück	160g
Standard	Q/320115QHKJ01-2013

Gehäusemaße (mm)



1: +15V 2: -15V

3: Ausgangspannung

4: Erdung

OFS: Offset-Einstellung GIN: Verstärkungsanpassung

Hinweis:

- 1. Verbinden Sie die Anschlüsse der Versorgungsspannung und des Ausganges richtig. Stellen Sie niemals eine falsche Verbindung her.
- 2. Zwei Potentiometer können (nur wenn es unbedingt notwendig ist) eingestellt werden, indem sie mit einem kleinen Schraubenzieher langsam zur erforderlichen Genauigkeit gedreht werden.
- 3. Die höchste Genauigkeit wird erreicht, wenn das Fenster komplett mit Stromleitern gefüllt ist.
- 4. Der In-Phasenausgang wird erreicht, wenn die Richtung des Stromes des Stromkabels die gleiche ist wie die Richtung der am Gehäuse gekennzeichneten Pfeile.

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101 Email: info@cy-sensors.com

http://www.cy-sensors.com