

Hall-Effekt AC/DC Stromsensor CYHCS-B200 mit geschlossener Kreisstruktur

Dieser Hall-Effekt Stromsensor basiert auf der geschlossenen Kreisstruktur und dem Kompensationsprinzip, und ist mit einer hohen galvanischen Isolation zwischen dem Primärleiter und der sekundären Schaltung. Er kann für Messungen von DC- und AC-Strom sowie von Impulsstrom verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

Produkteigenschaften	Anwendungen
 Exzellente Genauigkeit Sehr gute Linearität Geringe Größe und eingekapselt Geringer Stromverbrauch Stromüberlastbarkeit 	 Photovoltaik-Anlagen Mehrzweck- Wechselrichter AC/DC variable Geschwindigkeitstreiber Batteriebetriebene Anwendungen Ungestörte Energieversorgung (UPS) Umschalt-Energieversorgung

Elektrische Eigenschaften

Teilenummer	CYHCS-B200-10A	CYHCS-B200-20A	HCS-B200-20A CYHCS-B200-25A			
Nominalstrom	10A	20A	25A	40A		
Messbereich	0 ~ 20A	0 ~ 40A	0 ~ 50A	0 ~80A		
Interner Messwiderstand	100Ω±0.5%	6 50Ω±0.5% 40Ω±0.5%		40Ω±0.5%		
Windungsverhältnis	1:1000	1:1000	1:1000	1:1600		
Nominale Ausgangs- spannung	+2.5VDC ± (1V ± 0.5%)					
Versorgungsspannung	+5V ±5%					
Galvanische Isolation	50Hz,1min, 2.5kV					

Genauigkeit der dynamischen Eigenschaften

Null-Offsetsannung bei Ta=25°C	2.5 ±0.5%	V
Thermaldrift der Offset-Spannung Ip=0, Ta-25°C ~ +85°C	≤ ±0.5	mV/°C
Messgenauigkeit, Ta=25°C	≤±0.7	% FS
Linearität	≤±0.1	%FS
Folgegenauigkeit di/dt	50	A/µs
Antwortzeit	<0.5	μS
Bandbreite (-1db)	DC ~ 200	kHz
Lastwiderstand	≥10	kΩ

Allgemeine Eigenschaften

Betriebstemperatur	-25 ~ +85	°C
Lagerungstemperatur	-40 ~ + 100	°C
Stromverbrauch Ip=0	<45	mA

Beziehung zwischen Eingangsstrom und Ausgangsspannung

Beim Sensor CYHCS-B200-30A beispielsweise ist die Beziehung zwischen dem Eingangsstrom und der Ausgangsspannung in der Tabelle 1, Bild 1 und Bild 2 dargestellt.

Tabelle 1. Beziehung zwischen Eingangsstrom und Ausgangsspannung

Eingangsstrom (A)	-60	-45	-30	-15	0	15	30	45	60
Ausgangsspannung (V)	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5

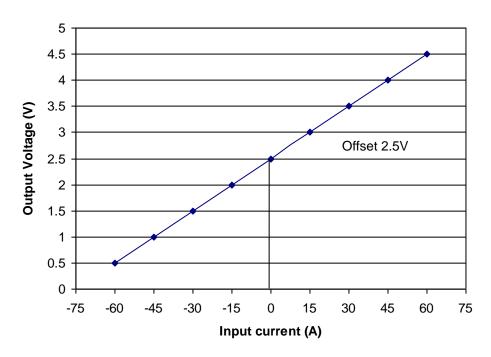


Fig. 1. Beziehung zwischen Eingangsstrom (DC) und Ausgangsspannung (DC)

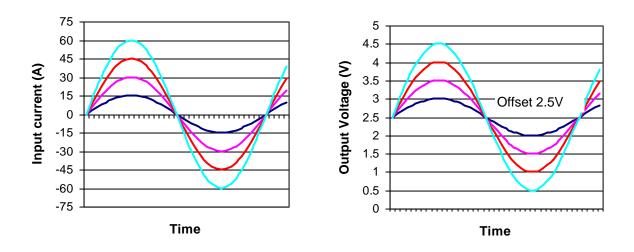


Bild 2. Beziehung zwischen Eingangsstrom (AC) und Ausgangsspannung (AC)

Email: info@cy-sensors.com http://www.cy-sensors.com

Maße (mm)

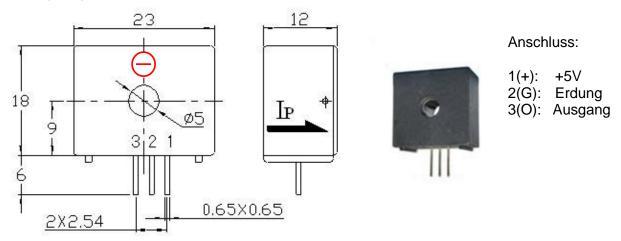


Bild 3 Maße des CYHCS-B200-10A und CYHCS-B200-20A

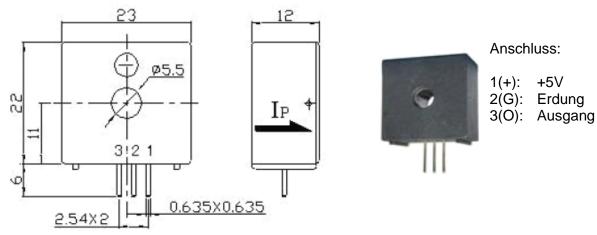


Bild 4 Maße von Sensor CYHCS-B200-25A und CYHCS-B200-40A

Verbindung

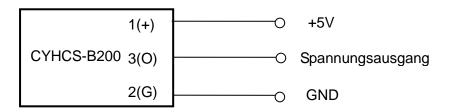


Bild 5 Verbindung des Sensors CYHCS-B200

Hinweis:

- 1. Verbinden Sie die Anschlüsse der Versorgungsspannung und des Ausgangs richtig. Stellen Sie niemals eine falsche Verbindung her.
- 2. Die höchste Genauigkeit wird erreicht, wenn das Fenster komplett mit Stromleitern gefüllt ist.
- 3. Der In-Phasenausgang wird erreicht, wenn die Richtung des Stromes des Stromkabels die gleiche ist wie die Richtung der am Gehäuse gekennzeichneten Pfeile.

Email: info@cy-sensors.com http://www.cy-sensors.com