

Split Core bidirectional Hall Effect DC Current Sensor CYHCT-L35B

The Hall Effect current sensor CYHCT-L35B is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of bidirectional DC current, DC pulse currents etc. The output of the transducer reflects the real wave of the input current in the carrying conductor.

Features and Advantages

- Bidirectional DC current measurement
- Output signal 0~±20mA, 0~±5V, 0~±10V
- High isolation between primary and secondary circuits
- Split Core, easy installation
- Protection against overvoltage
- Protection against reversed polarity
- Output protection against electrical disturbances

Applications

- Photovoltaic equipment
- Battery banks, such as, monitoring load current and charge current, verifying operation
- Transportation, measuring traction power or auxiliary loads
- Phase fired controlled heaters
- Directly connect to PLC
- · Sense motor stalls and short circuits
- Industrial instrumentation

Specifications

Rated bidirectional DC input current	50A,60A,70A,80A,90A,100A,200A,300A,400A,500A,800A,1000A			
Linear measuring range	1.2 times of rated input current			
Output signals	0~±20mA, 0~±5V, 0~±10V			
Power supply	+12V DC, +15VDC, +24V DC			
Measuring accuracy at 25°C	voltage output: ±1.0% for 50A~199A, ±0.5% for 200A~1000A			
	current output: ±1.0% for 50A ~ 1000A			
Linearity at 25°C	voltage output: ±0.5% for 50A~199A, ±0.2% for 200A~1000A			
	current output: ±0.5% for 50A ~ 1000A			
Zero offset voltage	±10mV	±10mV Hysteresis error: ±10mV		
Thermal drift of offset voltage	≤300ppm/°C Thermal drift of offset current ≤		nt ≤400ppm/°C	
Thermal Drift (-10°C to 50°C)	<1000ppm /°C			
Galvanic isolation	3 kV DC, 1 min Isolation resistance ≥100MΩ			
Response time	<1ms DC output			
Frequency Bandwidth (-3dB)	DC – 8kHz			
di/dt following accuracy	50A/µs			
Overload capacity	5 times of rated current			
Current consumption	≤30mA for voltage output, 30mA + output current for current output			
Output load	voltage output: ≥2kΩ, current output: ≤250Ω			
Mounting	Panel Screw mounting			
Case style and Window size	L35B with aperture Ø35mm			
Protection of Case	IP20			
Operating temperature	-40°C ~ +70°C Storage temperature -40°C ~ + 85°C			
Relative humidity	≤90%			
MTBF	≥ 100k hours			

Definition of Part number:

СҮНСТ	-	L35B	-	m	-	х	n	С
(1)		(2)		(3)		(4)	(5)	(6)

(1)	(2)	(3)	(4)	(5)	(6)
Series name	Case style	Rated Input current (bidirectional)	Output signal	Power supply	Connector
m = 50A, 60A,70A,80A, 90A, 100A, 200A, 300A, 400A, 500A, 800A,1000A (other input current between 50A-1000A)	x=1: 0~±5VDC x=2: 0~±20mADC	n=2: +12V DC n=3: +15V DC n=4: +24V DC	C=M: Molex Connector C=P: Phoenix		
	(other input current	x=9: 0~±10V DC	n=4: +24V DC	Connector C= S : Cable Connection	

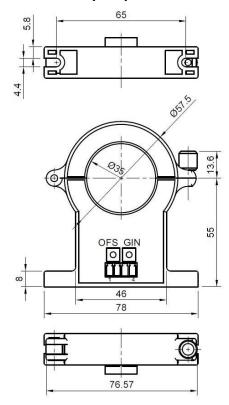
Example 1: CYHCT-L35B-100A-12M, Hall Effect DC Current sensor with Molex connector

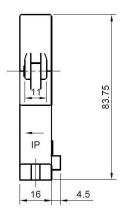
Output signal: 0~±5V DC Power supply: +12V DC

Rated input current: 0~±100A DC

Example 2: CYHCT-L35B-100A-23P, Hall Effect DC Current sensor with Phoenix connector

Output signal: 0~±20mA DC Power supply: +15V DC Rated input current: 0~±100A DC

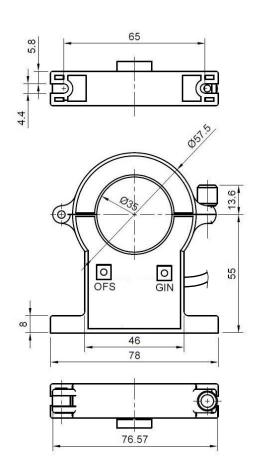

Nated input current. 0~±100A DC

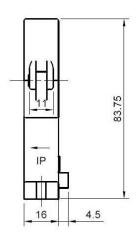

Example 3: CYHCT-L35B-200A-94S3, Hall Effect DC Current sensor with 3m cable connection

Output signal: 0~±10VDC Power supply: +24V DC

Rated input current: 0 ~± 200A DC

DIMENSIONS (mm) for MOLEX and Phoenix Connectors


Pin Arrangement


1: Vcc 2: GND 3: Signal Output (Vo or Io) 4: GND

OFS: Offset Adjustment GIN: Gain Adjustment Dimensions: 83.75mm x 78mm x 16mm, Aperture: Ø35 mm

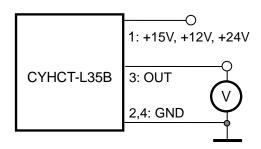
DIMENSIONS (mm) for Cable Connection

OFS: Offset Adjustment GIN: Gain Adjustment Dimensions: 83.75mm x 78mm x 16mm, Aperture: Ø35 mm

Cable Arrangement

1. Red: Vcc: +12V, +15V, +24VDC

2. Blue: GND (ground)

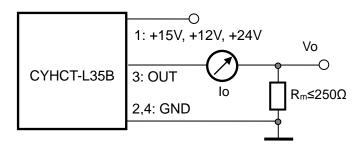

3. Yellow: Vo or lo (voltage or current output)

4. Black: GND (ground)

CONNECTIONS

The current carrying cable must pass through the window. The phase of output is the same as that of the current passing the window in the direction of the arrow indicated on the case.

Wiring of Terminals for voltage output:



Relation between Input and Output:

Sensor CYHCT-L35B-100A-12M			
Input current (A)	Output voltage (V)		
0	0		
±25	±1.25		
±50	±2.5		
±75	±3.75		
±100	±5		

1: Power supply; 2: GND; 3: Voltage Output

Wiring of Terminals for Current Output:

1: Power supply; 2: GND; 3: Current Output

Relation between Input and Output (for $R_m=250 \Omega$):

Sensor CYHCT-L35B-100A-23P				
Input current (A)	Output current Io(mA)	Output voltage Vo (V)		
0	0	0		
±25	±5	±1.25		
±50	±10	±2.5		
±75	±15	±3.73		
±100	±20	±5		

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screw driver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer case.