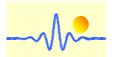
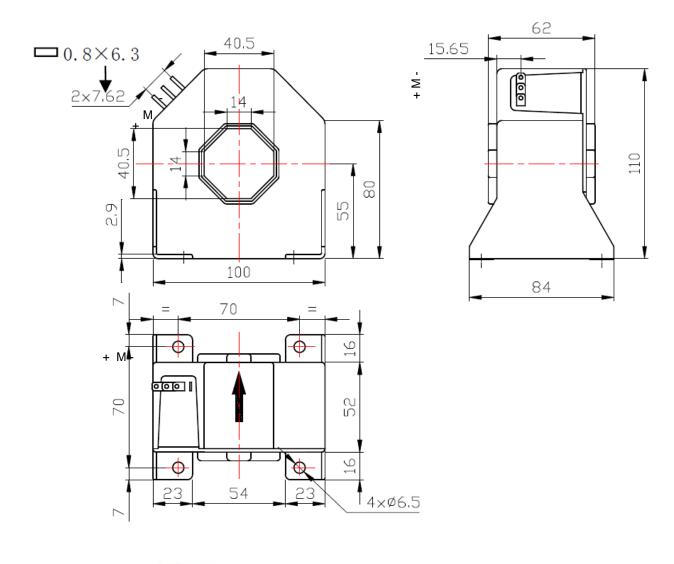


Closed Loop Precise Hall Current Sensor CYHCS-SH

This Hall Effect current sensor is based on closed loop compensating principle and can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.


Product Characteristics	Applications
 Excellent accuracy Very good linearity Accuracy independent on the position of premiary cable Lager measuring range 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

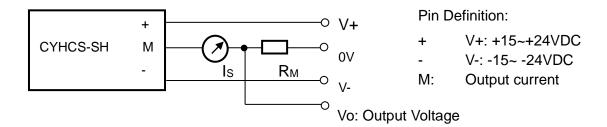
ELECTRICAL DATA

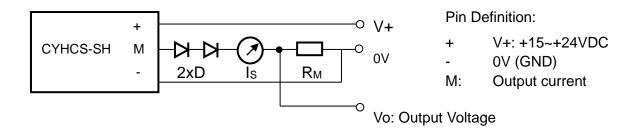

Part number	CYHCS-SH500A	CYHCS-SH1000A
Nominal input current IP	±500A	±1000A
Measuring range	0~±1500A	0~±2000A
Turns ratio	1:5000 (1:4000 custom made)	
Measuring resistance Vc=±15V	@±500Amax, 0-75Ω, @±1000Amax, 0-5Ω	@±1000Amax, 0-15 Ω , @±1200Amax, 0-5 Ω ,
Measuring resistance Vc=±24V	@±500Amax, 0-150Ω, @±1500Amax, 0-15Ω,	@±1000Amax, 0-50Ω, @±2000Amax, 0-3Ω,
Supply voltage	±15VDC ~ ±24VDC	
Nominal output current	100mA (125mA for 1:4000)	200mA (250mA for 1:4000)
Current consumption	≤20mA + Output current	
Galvanic isolation	50Hz, 1min, 6KV	
Secondary internal resistance	Ta=85°C, 60 Ω (47 Ω for turns ratio 1:4000)	Ta=85°C, 50 Ω (39 Ω for turns ratio 1:4000)
Operating temperature Ta	-40°C ~ +85°C	
Storage temperature	-40°C ~ +125°C	
Weight (approximate)	600g	

ACCURACY DYNAMIC PERFORMANCE

Zero offset current Ta=25°C	< ±0.2mA	
Magnetic Offset current IP→0	< ±0.2mA	
Thermal drift of offset current	IP=0, Ta=-40°C ~ +85°C, ±0.5mA, ±0.75mA (max.)	
Response time	<1µs	
Linearity at +25°C	±0.1% for rated current 100A ~1000A	
Accuracy at +25°C	±0.2% for rated current 100A ~1000A	
Bandwidth(-3dB)	DC200kHz	
Following accuracy di/dt	>100A/µs	

Dimensions (mm)





Sensor Connections

1) For Measurement of Bidirectional Current

2) For Measurement of Unidirectional Current

Two diodes, for instance IN4007 must be connected at the output of the sensor in order to guarantee the sensor to work well.

Operating instructions

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. The temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are the best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com