

Split Core Hall AC/DC Current Sensor CYHCS-KE

This Split Core Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
<ul style="list-style-type: none"> Excellent accuracy Very good linearity With Split Core, easy installation Less power consumption Window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	<ul style="list-style-type: none"> Photovoltaic equipment Frequency conversion timing equipment Various power supplies Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electric powered locomotive Microcomputer monitoring Electric power network monitoring

Electrical Data

Primary Nominal RMS Current I_r (A)	Measuring Range (A)	Output voltage (Analog) (V)	Window size (mm)	Part number (see application notes on page 3)
1000	0~ \pm 2000			CYHCS-KE-01000A-xC
2000	0~ \pm 3000			CYHCS-KE-02000A-xC
5000	0~ \pm 7500			CYHCS-KE-05000A-xC
8000	0~ \pm 12000			CYHCS-KE-08000A-xC
10000	0~ \pm 15000			CYHCS-KE-10000A-xC
15000	0~ \pm 15000			CYHCS-KE-15000A-xC
20000	0~ \pm 20000			CYHCS-KE-20000A-xC

(Connector: C=S, Cable connection; C=P, Phoenix connector)

Supply Voltage

$V_{cc} = \pm 15$ VDC

Current Consumption

$I_c < 45$ mA

Galvanic isolation, 50/60Hz, 1min:

6kV

Isolation resistance @ 500 VDC

> 500 M Ω

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25^\circ C$ (without offset),

$E < \pm 1.0\% FS$

Linearity from 0 to I_r , $T_A=25^\circ C$,

$E_L < \pm 0.5\% FS$

Electric Offset Voltage, $T_A=25^\circ C$,

25mV

Magnetic Offset Voltage,

30mV

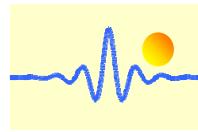
Thermal Drift of Offset Voltage,

$V_{ot} < \pm 1.0\text{mV}/^\circ C$

Frequency bandwidth (- 3 dB):

DC-20kHz

Response Time at 90% of I_P

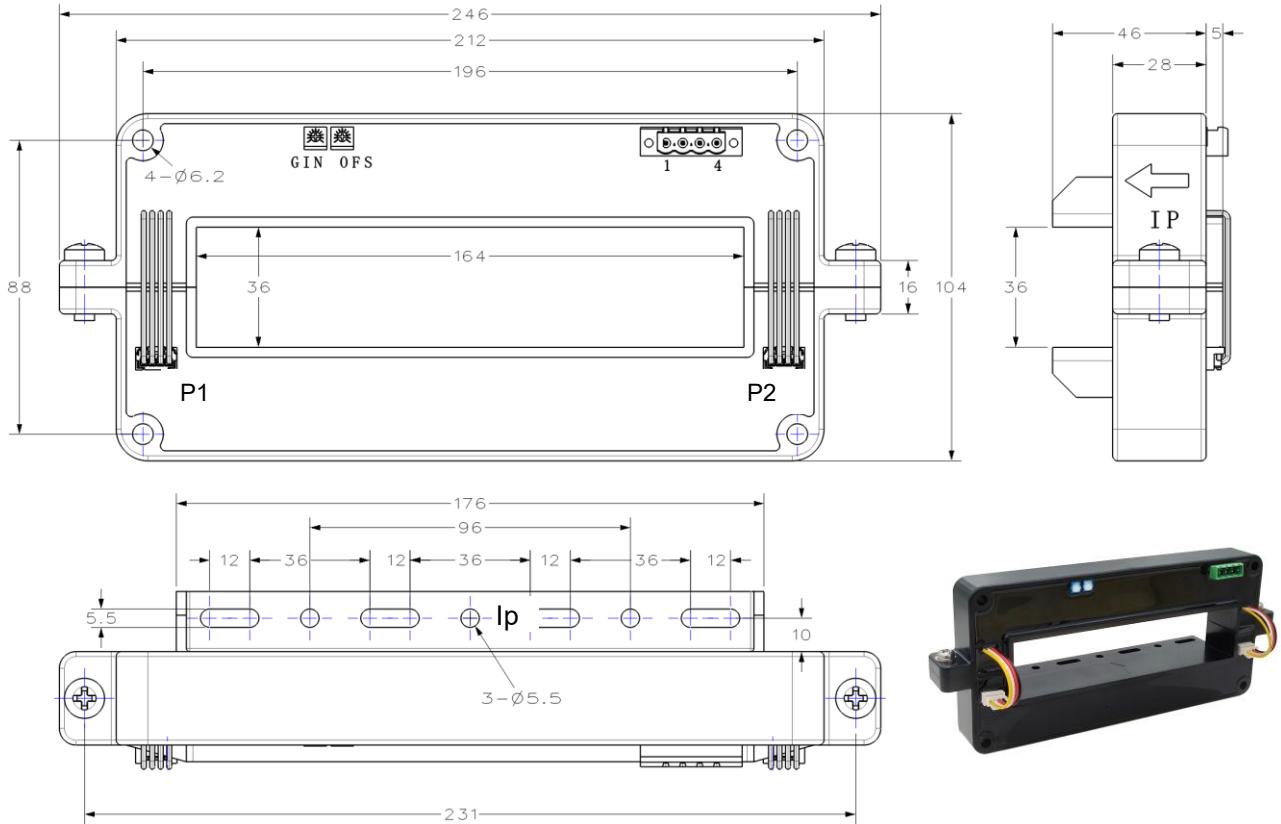

$t_r \leq 10\mu s$

Load resistance:

10k Ω

Unit weight:

1390g



General Data

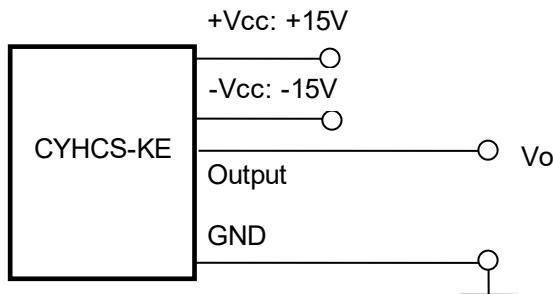
Ambient Operating Temperature,
Ambient Storage Temperature,

$T_A = -25^\circ\text{C} \sim +85^\circ\text{C}$
 $T_S = -40^\circ\text{C} \sim +100^\circ\text{C}$

Dimensions

GIN: gain adjustment, OFS: offset adjustment
Window size: Standard: 164 x 36, Custom-made: 164 x 64

When the current under test is exceeding 5000A, please connect terminal P1 and terminal P2.


Pin Arrangement:

1(+): +Vcc
2(-): -Vcc
3(O): Output
4(G): Ground (GND)

Cable connection:

Red: +Vcc
Blue: -Vcc
Yellow: Output
Black: Ground (GND)

Sensor Connection:

Notes:

1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
2. Two potentiometers can be adjusted, only, if necessary, by turning slowly to the required accuracy with a small screwdriver.
3. The best accuracy can be achieved when the primary input cable is positioned at the center of sensor window and occupies over 50% of the window area.
4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer.

Application Notes

1) Part number CYHCS-KE-xxxxxA-xC

xxxxx: current value;
x: output voltage ($x=0$: $0 \sim \pm 4V \pm 1.0\%$; $x=1$: $0 \sim \pm 5V \pm 1.0\%$).
C: Connector (C=S, Cable connection; C=P, Phoenix connector)

Example 1: CYHCS-KE-10000A-0S Hall Effect AC/DC Current sensor with cable connection
Output signal: $0 \sim \pm 4V$ AC/DC
Power supply: $\pm 15VDC$
Rated input current: $0 \sim \pm 10000A$ AC/DC

Example 2: CYHCS-KE-10000A-1P Hall Effect AC/DC Current sensor with Phoenix connector
Output signal: $0 \sim \pm 5V$ AC/DC
Power supply: $\pm 15VDC$
Rated input current: $0 \sim \pm 10000A$ AC/DC

2) Relation between Input current and output signal

Current Sensor	CYHCS-KE-10000A-0S	CYHCS-KE-10000A-1P
Input current (A)	Output voltage V_o (V)	Output voltage V_o (V)
-10000	-4	-5
-7500	-3	-3.75
-5000	-2	-2.5
-2500	-1	-1.25
0	0	0
2500	1	1.25
5000	2	2.5
7500	3	3.75
10000	4	5