

AC/DC Closed Loop Hall Current Sensor CYHCS-B8S

This Hall Effect current sensor is based on the closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications			
Excellent accuracy	Photovoltaic equipmentGeneral Purpose Inverters			
Very good linearity	AC/DC Variable Speed Drivers			
Small size and encapsulated	Battery Supplied Applications			
Less power consumption	Uninterruptible Power Supplies			
Current overload capability	Switched Mode Power Supplies			

Electrical Data/Input

Part number	Primary Rated Current I _r (A)	Measuring Range $I_p(A)$	Primary Conductor (mm)	Turns ratio	Internal measuring resistor (Ω)	
CYHCS-B8S05A	5	± 16	Ø 0.8	2:1600	100±0.5%	
CYHCS-B8S10A	10	± 32	Ø 1.0	1:1600	100±0.5%	
CYHCS-B8S15A	15	± 48	Ø 1.0	1:1200	50±0.5%	
CYHCS-B8S25A	25	± 80	Ø 1.4	1:1500	37.5±0.5%	

Rated Output Voltage: +2.5V±0.625V ±0.5% Supply Voltage $+5V \pm 5\%$, **Current Consumption** <30mA Isolation voltage (50/60Hz, 1min) 2.5kV Accuracy: 0.7% Linearity: <0.1% FS Electric Offset Voltage +2.5V ±0.5% Thermal Drift of Offset Voltage, ±0.5mV/°C Response Time: $< 0.5 \mu s$ Di/dt following accuracy: 50A/µs Frequency Bandwidth (-1dB): DC ~ 200kHz

General Data

Ambient Operating Temperature: $-25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature: $-40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Relation between Input Current and Output Voltage

Take the sensor CYHCS-B8S10A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Relation between the input current and output voltage

Input current (A)	-30	-20	-10	-5	0	5	10	20	30
Output voltage (V)	0.625	1.25	1.875	2.188	2.5	2.813	3.125	3.75	4.375

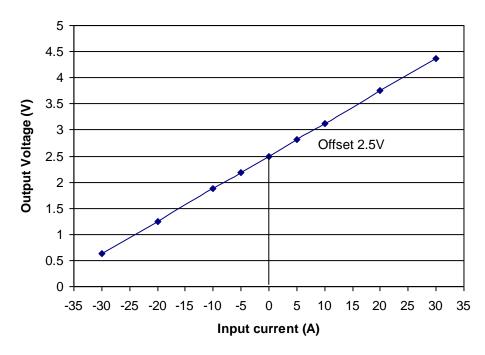


Fig. 1 Relation between the input current (DC) and output voltage (DC)

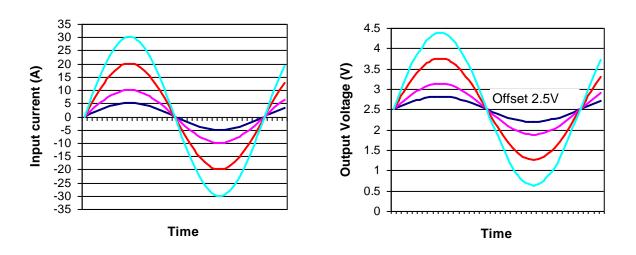


Fig. 2 Relation between the input current (AC) and output voltage (AC)

Email: info@cy-sensors.com http://www.cy-sensors.com

Dimensions (mm)

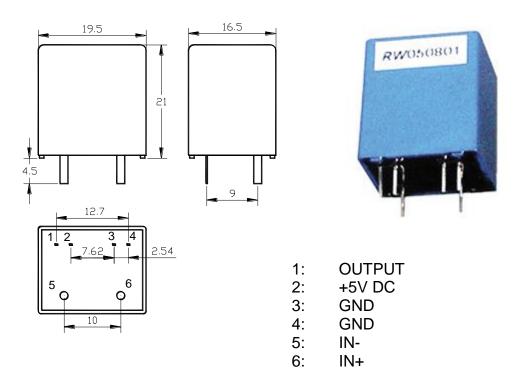


Fig. 3 Dimensions of sensor CYHCS-B8S

Connection

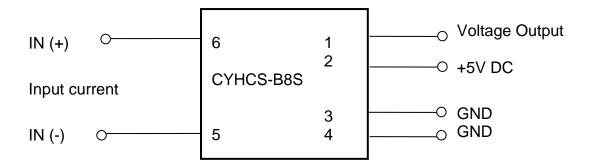


Fig. 4 Connection of CYHCS-B8S

Operating instructions

- 1. Connect the pins of power source, output respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.

Email: info@cy-sensors.com http://www.cy-sensors.com